
JOURNAL OF COMPUTATIONAL PHYSICS 80, 498-505 (1989) 

Note 

Complex- Plane Methods for Evaluating Integrals 
with Highly Oscillatory Integrands* 

I. INTRODUCTION 

Complex-plane methods have been very effective in the numerical and analytical 
evaluation of many integrals of interest in physics. (Typical examples are given in 
Refs. [l-7].) Of particular importance are integrals that can be evaluated by the 
methods of steepest descent [ 1,2,4] and of stationary phase [4] and integrals 
whose integrands have rapid asymptotic oscillations [ 1, 3,4,6, 7 3. We report briefly 
here on two general types of highly oscillatory integrals which can be evaluated 
easily by deforming the contour of integration in the complex plane. Other methods 
for evaluating special cases of such integrals are given, e.g., in Refs. [S, 91. 

A. Oscillatory Integrands with Exponential Damping 

Consider an integral of the form 

z’+‘(k,n)=/omf’+‘(k, a;X)dx, (1.1) 

where k and a are oscillation and damping coefficients, respectively, as can be seen 
from the asymptotic form off” ), 

f’+k a; x) z B( + ‘(x) eikxe pu,‘, (1.2) 

and B’+‘(x) is a rational function of x. For small values of k (relative to a), the 
integral can be evaluated by integrating along the real axis, normally by using a 
standard quadrature scheme. However, if k-a, the integrand begins to oscillate 
rapidly, making the real-axis integration very dihicult, and for larger values of k, it 
becomes crucial to use a complex-plane technique to evaluate the integral. We let 
x -+ z = x + iy and deform the contour by rotating the real axis to the line defined 
by 

Y(x)=:*, (1.3) 
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so that 

eikze-az=,-o -l(k2 + 02)x 
> (1.4) 

which decreases exponentially with no oscillatory behavior. The resulting integral 
along this line now converges very rapidly. Note that the asymptotic oscillations 
are eliminated for any value of k. This method may be used to evaluate numerically 
a number of simple integrals having highly oscillatory behavior and the high- 
momentum components of the Fourier and spherical Bessel-function transforms of 
the Woods-Saxon and Gaussian potentials. It can also be used to evaluate certain 
types of oscillatory principal-value integrals. For further details, see Ref. [7]. 

B. Oscillatory Integrands with No Exponential Damping 

An example of this type is [68] 

IjjsL(kk’p) = fom r2jj(kr)jjWr) j&r) dr, (1.5) 

where j,(x) is a spherical Bessel function. This integral cannot be evaluated by 
numerical integration along the real axis. It can be expressed in terms of a hyper- 
geometric function whose series expansion is much too complicated to be useful. 
Equation (1.5) does reduce to a closed-form expansion [8] for the case in which I’, 
i’, L and k, k’, p satisfy certain triangular inequalities. (See Section III.) However, 
the only general, reliable way to evaluate such an integral is by a complex-plane 
method [3,6,7]. Integrals of this type are the most important examples of 
the method we are using, and the remainder of this paper will be devoted to the 
evaluation of the general integral 

where m and n > 0 are arbitrary integers and X,,(k,r) is a spherical Bessel function, 
j,,, or a spherical Neumann function n,,. Special cases of this integral have been 
discussed in Refs. [6-81 (for m = 2, n = 3) and in Ref. [9] (for m = 0, n = 3). 

II. COMPLEX-PLANE METHOD FOR EVALUATING E~.(1.6) 

Consider the integral 

JI$)...Jklkz ...k,) =fom rm [ fi X,,(kir)] dr, 
i= 1 

(2.1) 
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which can be separated as 

Jl,“!..,“(W,k) = [OR rrn [ii &r)] dr+Jg;“![,(k,k,. . .k,). (2.2) 
i= 1 

We adopt the notation that Jj,“).. .,(k, k, . . . k,) = Z&‘. .,Jk, k, . . . k,) if all of the x,,‘s 
are spherical Bessel functions. Note that the first integral in Eq. (2.2) may diverge 
of m < 0 or for certain combinations of one or more Neumann functions. In any 
case, we assume that if the first integral exists, it may be evaluated using standard 
numerical quadrature. See Ref. [6] for a discussion of how to choose R (for m = 2, 
n = 3) in order to avoid either undue oscillations in the first integral in Eq. (2.2) or 
near singularities in the J&‘Y!l, function. 

We now proceed to evaluate Eq. (1.6). First, expand the product of x,,‘s in the 
integrand as 

ifJ, Xr,(kir) = 2-“t,, tl* . . t/” (2.3) 
1 

where 

i 

1 if xl, is a j,, 
tit = 

-i if x,, is an n,,, 

HjnT1’(kir) = 
hj,‘)(kir) for ti= -1 

si,hj,2)(kir) for z;= +l, 

(2.4) 

(2.5) 

and 

(2.6) 

The functions hj,” and hj,2’ are spherical Hankel functions having the following 
asymptotic behavior 

(2.7) 

Note that the ri in Eq. (2.3) run over the values - 1 and + 1. Next, examine a 
particular term in the expansion of Eq. (2.3), namely 

Hj;“(k, r) Hj,‘2’(k2r) . . . Hj;n)(k,r), (2.8) 
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FIG. 1. Contours of integration in the complex r plane (r +z=x+iy) for the evaluation of the 
integral in Eq.(1.6). Along C2, z=R+iy, O<y<co, while along C3, z=R+iy, -co<y$O. The 
integrals along the sections of infinite semicircles vanish. 

for which we define 

p= i riki. 
i= 1 

(2.9) 

From Eq. (2.7), if p > 0 then the term, (2.8), is analytic in the upper half-plane of 
Fig. 1, while if p < 0, it is analytic in the lower half-plane. We thus separate Eq. (2.3) 
as 

n 

iv1 X,,(kir)=~~,,,...,~(k,k, .-.k,;r)+eQ . ...” (klk,..-k,;r), (2.10) 

where @,,,, ,. contains all of the terms analytic in the upper half-plane and Y,,,* ,n, 
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all of the terms analytic in the lower half-plane. Also, from the analytic properties 
of the Hankel functions, it can be shown that 

%,/r..,n(k,k, 4,;z)=@$, [“(k,k,...k,;z*). 

Combining Eqs. (1.6), (2.10), and (2.1 l), we find that 

Jj,/;‘Y!,& k, . . a k,) 

(2.11) 

= -~~xdy~mC(R+iy)“~,,,~...,~(k,k2~~~k,;R+iy)], (2.12) 
0 

an integral that converges rapidly and can be evaluated by Guassian quadrature [6]. 
A useful relation can be derived from Eq. (1.6), namely 

(2.13) 

Thus, if some of the kis are very small or very large, the integral may be scaled to 
a range of k values which is numerically manageable [6 3. 

III. THE Z$..,,(k,k, ... k,) FUNCTION 

We conlude with a derivation of an important property of the Zj$ ...G function. 
This occurs in the angular momentum decomposition of 

which after some angular momentum recoupling becomes 

=“;21”;l,” 1 Ij,:l,(k,k,...k,) 
” 1112 /” 

x fi [(Z, + 1 )1/21.‘zl Q,,,> . . . . . (1;1, &, . . . . f,), 
i= I 

where 

(3.2) 

Q,,~,...,,(f,,ff,> . . . . f,J= C fi y&,,(h) 
mlm~~~-rn, i= 1 
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Y,,,Jk) is a spherical harmonic, and %‘(a&; afly) is a product of the Clebsch- 
Gordan coefficients : 

qabc; &) - (abcg?; cy)(abOO; co). (3.4) 

In the above we have related all vectors to k,. However, there is nothing special 
about k,; thus, these equations can always be rewritten in terms of any one of the 
k,. From the properties of the Clebsch-Gordan coefficients, we find that 

i li>Ij; j= 1, 2, . . . . n (3Sa) 
I= I.i#j 

and 

t-1 /1+/z+ .” +r,= 1 5 (3Sb) 

which are the angular momentum decompositions of the vector inequalities implied 
by Eq. (3.1), namely 

i ki>kj; j= 1, 2, . . . . n. (3.6) 
i= I,i#j 

Assume that, for a particular I# _. ,), function, Eqs. (3.5) are satisfied but not 
necessarily Eqs. (3.6). Then, from the relation 

j,( -xl = (- )Vix) (3.7) 

and Eq. (3.5b), we obtain 

Z!:,l..&,k,- .kJ=;jh x2j,,(k,x) j&x) . . ~j&,x) dx. (3.8) m 

Next, assume that one of the Eqs. (3.6) is violated; e.g., j = y, with 

i k,<k,. (3.9) 
i= I.i#y 

However, from Eq. (3.9) it also follows that 

k,+ i T;k, > 0, (3.10) 
i= I.!#-, 

with ri = f 1, and all possible combinations of rls in the sum are allowed, so that 
Eqs. (3.6) are satisfied for j # y. Then Eq. (3.8) can be rewritten as 

Zj;;...,Jqk, ... kJ= ~I:,;...,JW, . ..k.)+L!~~...,~(k,k,...k,), (3.11) 
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where 

UI:,li(k,k*...k,)=~ j~mx2dxhj;)(k,x) fi j,,(kiX) 
r=l 
i#Y 

(3.12a) 

and 

I$;. ,“(k, k, . . k,) = t j_x, x2 dx hjf’(k,x) i j,,(kix). 
i=l 
i#Y 

(3.12b) 

The integrands on the right-hand sides of Eqs. (3.12a) and (3.12b) are analytic in 
the upper and lower half planes, respectively, a result which follows from Eq. (3.10). 
The only possible pole which can occur in these integrands is at x =O, where we 
have 

and 

cI= [ 1 i 1; -I, >o, i= l,i#y 

(3.13) 

(3.14) 

which follows from Eqs. (3Sa) for j= y. Thus, there is no pole at the origin and for 
Eqs. (3.12) we may complete the contours in the upper and lower half planes to 
obtain 

We have established that if Eqs. (3.5) are satisfied, I$:. ., ,,(k,k, . . . k,) will vanish 
if one of the vector inequalities in Eqs. (3.6) is violated. This means that 
Ij:;...,(k k ... 1 2 k,) is a step function in the ki’s, a property that must be taken into 
account when using this function in calculations. This behavior, of course, just 
reflects the angular momentum decomposition of the delta function in Eq. (3.2). 
Finally, we mention that I{;,: . ...” (k, k2 . . . k,) does not generally vanish if one of the 
Eqs. (3.6) is violated and Eqs. (3.5) are not satisfied. For this case, the complex- 
plane method described in the previous section must be used to evaluate the 
integral. 
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